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Abstract. We investigate the phase transition of the spherical model on the Cayley tree. 
There is only one transition temperature T,; the specific heat shows a finite discontinuity 
at T,; there is no spontaneous magnetisation; the susceptibility remains finite, but shows a 
cusp at T, with infinite slope on the high temperature side. These results differ 
significantly from spherical model properties on a lattice and from the recent Ising model 
calculations on the Cayley tree with its phase transition of continuous order. 

1. Introduction 

Statistical mechanics on a Cayley tree has recently met with some attention: this 
topology is simple (and unrealistic) enough to allow exact solutions for a number of 
problems. 

A Cayley tree (cf figure 1) is distinguished by the fact that there are no closed paths 
coming back to a point and that all bulk points have the same number of nearest 
neighbours. If we call this coordination of the bulk points k + 1, then k = 1 cor- 
responds to the linear chain and for k 3 2 we have real trees. 
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Figure 1. Cayley tree k = 2, L = 3. Values of i are shown next to the open circles. 

Due to the fact that there are no closed loops on the tree, the number of points 
grows as k" where n runs over all 'generations' n = 0,1, .  , . , L and where the Lth 
generation represents the surface. Therefore the fraction of points on the surface 
tends towards (k - l)/k for L + a. 

In particular the Ising model on the Cayley tree has been investigated by a number 
of authors: Eggarter (1974), Matsuda (1974), Miiller-Hartmann and Zittartz 
(1974,1975), von Heimburg and Thomas (1974) and Falk (1975). They found some 
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surprising results: the Cayley tree as the basis of a statistical system in its own right is 
not identical with the Bethe lattice of Domb (1960); instead it exhibits a new type of 
phase transition which has been called ‘phase transition of continuous order’: the 
specific heat is completely regular and is identical with the corresponding expression 
for a linear chain; there is no spontaneous magnetisation, but the susceptibility and all 
higher derivatives of the free energy with respect to the field diverge at a series of 
infinitely many different temperatures. 

Stimulated by these remarkable results, we found it worthwhile to look at the 
behaviour of other models on the Cayley tree. 

In this paper we study the mean spherical model (MSM) on a Cayley tree. First we 
give a short review of the MSM as introduced by Lewis and Wannier (1952,1953) and 
Yan and Wannier (1965) on the basis of the spherical model of Berlin and Kac (1952) 
(cf the review article by Joyce 1972). 

In 00 3 and 4 we calculate the partition function for the tree topology and solve the 
spherical condition which yields the relevant non-analytic temperature dependence of 
the Lagrange parameter. This leads to the discussion of the thermodynamic pro- 
perties of our model and the character of its phase transition, including the dis- 
tribution of the mean spin length over the tree in 00  5 and 6. 

2. The mean spherical model (MSM) 

The MSM is made up of N scalar ‘spin’ variables -CO C ai C CO, with the restriction that 
the thermal average of the spin length l/ZV(Zi U:) = 1; this is called the spherical 
condition. 

Therefore the MSM is described by the following effective Hamiltonian 

where the first term is the exchange interaction, K = J/2kBT. 

be determined in such a way that ( X i & )  = N. 

b = &B. 

The second term is a Lagrange term for the total length of the spins, where S must 

The third term is the Zeeman term with b proportional to the magnetic field B: 

With this Hamiltonian we get the partition function 

To determine the Lagrange parameter S which we can consider as a function of the 
effective coupling S = S(K, b), we have to solve the spherical condition defined by 

a (1 U:) = N =  -as In QN. 
I 

(3 1 

In order to calculate the partition function we define a matrix A and vectors a, 1 by 

-p%= : - K u T A u + b l T u  (4 1 
A means the (N x N) matrix coordinated to the bilinear form in the spin variables ui 
and all vectors are elements of RN. 
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With this matrix A, we can calculate the partition function in closed form and we 
get (cf appendix 1) 

b2 
(- %) 4K ' detA 

N/2 

QN = (z) (det A)-'/' 

where Ai denotes the matrix obtained from A by replacing the ith row by 

l T = ( l ,  ..., l )€RN. 

Subsequently we get for the internal energy per site in zero field U = ( - J Bii a,uj). 
With our definitions and the spherical condition one obtains 

1 S(K) where z ( K )  = -* 
K '  =9 (=- r ( K ) )  

for the specific heat per site 

a 
aT a 2 ' (  aK cn=o :=-U =-ke 1 + 4 K 2 - z ( K ) ) ;  

for the magnetisation per site 

and finally the isothermal susceptibility per site becomes 

From equations (6)-(9) we can see that the most important thermodynamic vari- 
able is the reduced Lagrange parameter r ( K ,  b ) =  S(K, b ) /K .  The value of this 
parameter is to be chosen in such a way that it solves the spherical condition (3) which, 
taking ( 5 )  into account, becomes 

3. Calculation of the partition function 

After this review of the MSM, we consider at first the term det A in the partition 
function (5) .  

O n  the Cayley tree A assumes the following appearance (figure 2) for the simple 
numbering of the sites i indicated in figure 1. 

Though we need only calculate the determinant of A it is always of interest to 
know the eigenvalues of this matrix and therefore we compute at first the roots of 

det (A- A I) = 0. 

To do this, we use elementary transformations to bring the symmetric matrix 
A-A I to a triangular form of the appearance seen in figure 3. 
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In the diagonal of this triangular matrix B we have now terms a[, where 1 cor- 

In detail we get from the appropriate subtractions of multiples of the lower lines of 
responds to the (L + 1 - I)th generation of the tree (see figure 1). 

A from lines further above: 

a3 
a3 

-1 a2 

-1  82 

-1  a2 

-1 a2 

By multiplying this continued fraction with products AI-1 = a1 . a2 . . . Q I - 1  we get a 
difference equation for these products 

Ai = ( Z  -A)Ai-1- kA1-2 (12) 

-1 
-1 

-1 
-1 

-1 
-1 

-1  
-1  

a1 

a1 
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which can be solved in an elementary manner and yields the following eigenvalues 

(13) 
r v  

A(1 ,  r ) =  z - 2& cos - 
1 + 1  

r = l ,  . . . ,  1;1=1,  . . . ,  L+1. 

These eigenvalues are identical to that of the MSM on a set of open linear chains of 
lengths 1 + 1 with an effective exchange constant J&. There are many independent 
eigenmodes on the tree corresponding to oscillations of different regions of the tree; 
these eigenvalues show a degeneracy depending on I :  

(k - l)kL-' 1 s L  

i l  l = L + l .  
degeneracy = 

Hence we get for det A the following expression 
L /  (k-l)&L-1 L+l 

de tA=  { = I  n r = l  n (Z-~~COSE)  1+1 r = l  n ( 2 - 2 A c o s 3 .  L + 2  

We first carry out the finite product (cf Gradsteyn and Ryzhik 1965). 
I 

AI:= r = l  n ( z - 2 4 c o s K )  1+1  

I sinh (I + l)y Z 
where cosh y = . z 

(14) 

With (16) we obtain 

(17) 
L+l sinh (L + 2)y 

/=1 sinh y (") sinhy * 

(k-1)LL-I 
det A = fi ( (,/&y sinh (I+ ')y) 

If L grows beyond all limits we finally get 

In order to obtain the partition function ( 5 )  in a magnetic field we now have to 
calculate 

det Ai Chi := 1 - 
i detA'  

The procedure to do this is essentially the same as that applied in the preceding part of 
this section: after transforming the matrix Ai to a triangular matrix which can be 
reduced to inhomogeneous difference equation and solved by elementary techniques. 

Because this procedure is a little bit lengthy, we give only the final result: 

& L + l  L+l I sinh y 1 sinh ly 1 sinh ly 
Chi = k + 1-2  zl { ('&)'sinh ( I+  l)y ' X s i n h  ( I  + l)y -1+ z s i n h  (I+ l)y 

sinh y sinh (L + 1 - 1)y 
x [ (&)=+l-I  ~ i n h ( L + 2 - l ) y + ~ ~ s i n h ( L + 2 - 1 ) y  

which, in the limit L + Q), reduces to 

' (21) 
1 k - 1  sinh ly 1 sinh y 
- N Chi = k + l - z  [e-y 1 = 1  ' (i)'sinh (I + l)y +zl (x) sinh (I + l)y k - 1 
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We have made sure that those terms of (20) that vanish in the thermodynamic limit do 
not contain even infinitely weak singularities. 

A careful examination moreover reveals (cf appendix 2) that the apparent pole of 
Chi at z = k + 1 has a vanishing residue, in other words, that Chi is analytic for all 
z > 2Jk, or, equivalently, y > 0. 

4. The spherical condition 

According to the construction of the MSM the partition function and the ther- 
modynamic properties have to be considered under the constraint of the spherical 
condition (3) and (10). With the results (18) and (21) of the previous section we obtain 
from (10) the spherical condition for our model 

(k- l ) ' -drZl  (i) In sinh y 
2K d sinh(I+l)y - b2 d 1 -- 

2(k - l )K dz k + 1 - z  

sinh ly 1 sinh Iy Le-' I=' ' (i)'sinh (I + l)y +Zl (z) sinh (1 + l)y k - 1 

with y = y (z) = cosh-'(z/2Jk) = cosh-'(S/2&K). 
As in all MSM calculations one is interested in that region of parameters where the 

right-hand side of the spherical condition might have singularities of some sort with 
respect to the variable z = S/K (Lagrange parameter). Since we have made sure that 
these terms are, in our case, analytic for all z > 2Jk(or y > 0), we have to concentrate 
on the region z 5 2 J k ;  as z approaches 2Jk  the lowest eigenvalue of the effective 
Hamiltonian (1) vanishes according to equation (13); thermodynamic stability, 
however, requires all eigenvalues to be positive; therefore, z is restricted to the 
interval (2Jk, a). 

Keeping this in mind, we evaluate (22) and find 

4&K 
(k - 1l2- 

(I + 1) cosh (I + l)y -cotanh y sinh (I + l)y 
sinh y sinh (I + l)y -- f (3 

sinh Iy 
(23) 

e-' 
(k + 1 -2) sinh y 

- 

Here we have explicitly given all terms that can give rise to singularities; the remaining 
R (y ) varies slowly and continuously everywhere. 

Expanding (23) about b = 0 and y = 0, i.e. where the Lagrange parameter z 
approaches its limiting value 2Jk, we get 

Here K,, A,, F, depend only on k : 

1 3k-1 
Kc=12Jkk-l 
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1 45k3-25k2+35k-7 
A;l=z%z (k - 1)3 

1 k - 1  ( k - k l n - ) .  k 
’ ‘ = a m  k - 1  k - 1  

Equation (24) determines the temperature dependence of z ;  as we lower T we 
approach a critical temperature T, = .T/2k&, where, for b -+ 0, z -+ 2Jk from above. 
In this case we get 

( ~ / 2 J k ) -  1 =A,(K,-K) K < K,. ( 2 5 )  

We see that in the zero field case the reduced Langrange parameter approaches its 
limiting value 1 linearly as we lower the temperature. This behaviour is in contrast to 
the three-dimensional lattice model, where the analogous Lagrange parameter S/6K 
approaches its critical value quadratically. 

For finite magnetic field z remains above 2v‘k for all temperatures; if b + 0 for 
T < T,, z/2Jk can approach 1 in such a way that (24) is fulfilled for all temperatures. 

This behaviour is sketched in figure 4. 

(a1 I bl 

F i p e  4. Solution of the spherical equation (a )  Cayley tree; (6) three-dimensional lattice. 

5. The thermodynamic properties 

According to (25) the slope of z(T) is a discontinuous function of the temperature 
T - 1/K. This has to be contrasted with the three-dimensional lattice model where 
z ( T )  has a continuous slope and only its second derivative is a discontinuous function 
of temperature. So we have the remarkable result that our model has a zero field 
phase transition which is even stronger than that on the three-dimensional lattice, 
whereas the Ising model on the Cayley tree in zero field exhibits no phase transition of 
any finite order. 

Due to the discontinuity of dz/dT the specific heat, calculated from (7), has a finite 
step at T,. 

This behaviour is sketched in figure 5 .  
Thus the phase transition is more pronounced on the tree than on a regular 

three-dimensional lattice. An analogous result was found by Rauh (1976) for a 
three-dimensional lattice with layerwise disorder, for which the specific heat also 
shows a finite step. This is another argument in favour of the supposition that a Cayley 
tree has model properties not too different from those of disordered systems, a 
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t 

Figure 5. Zero field specific heat per site. (a) Cayley tree; ( b )  three-dimensional lattice. 

supposition based on the fact that the tree, likes a disordered system, has structural 
short-range order but in some sense no structural long-range order. 

Let us now look at the field dependent properties of our model. From (8) and ( 2 1 )  
we get the magnetisation m per site. If we expand m about y = 0 we obtain for small b 

(26) 
b 
K m =-{C, -Cl [ (z /2Jk)-  1]"2} 

where CO, C1 are numbers depending only on k : 

k 
k ln- C1=-- k 

k - 1  k - 1 '  

From (26) we see directly that our model, just like the Ising model on the Cayley tree, 
has no spontaneous magnetisation. 

According to (9) the zero field susceptibility contains the derivative of the 
Lagrange parameter with respect to the field. It can be shown that this derivative goes 
to zero for vanishing field. Hence we get 

XT = 2p2 {Co-C1[(~/2Jk)-  lll"}. (27) 

The zero field susceptibility of our model remains finite for all temperatures and 
shows a cusp at the critical temperature as sketched in figure 6; its slope, however, has 
a (T - TJ"' infinity as T approches T, from above. 

to) I bl 

Figure 6. Zero field susceptibility. (a) Cayley tree; (C) three-dimensional lattice. 
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Below the critical temperature both the specific heat and the susceptibility are 
independent of temperature. This is the well known artefact of the spherical model, 
which, independent of the underlying topology, is due to the pinning of the Lagrange 
parameter below T,. 

6. Spin distribution 

Finally we would like to know, whether, due to the peculiar topology of the Cayley 
tree, our result might not be produced by a pathological distribution of the spin length 
over the tree. The spin length distribution is determined by energy minimisation; we 
therefore expect the surface spins with only one bond to be at least somewhat shorter 
than those in the interior. 

We define an ascending generation number 1 which denotes the surface of the tree 
with 1 = 1 and its root, in the thermodynamic limit, with 1 = CO. 

All kL+'-' sites of a given generation 1 of the tree are equivalent. Therefore it is 
sufficient to calculate the mean spin length of one generation. 

For this purpose we add a local Lagrange term SI Bh(l}a? to our Hamiltonian ( 1 )  
where B i e ( ~ }  means the summation only over the sites of the lth generation. 

We then obtain the mean length of one spin in this generation from 

where QL is the partition function including the local Lagrange term. 
Equation (28) can be evaluated with the methods of 0 3 to give 

(21)y f (',"" cotanh (n + l)y . 1 (&€{I)  = ( k  - 1)k' sinh (21)y f (;)"+I - 
2K [ZAsinh  y 2 A s i n h  y h=I k 

(29) 
We restrict our considerations to the mean spin length at the critical temperature, 

where y = 0, and we obtain 

For 1 = 1 ,  corresponding to the surface, we have 

and for 1 +CO, goes to 

6 ( k  - 1)' k 
3 k - 1  k - 1 '  (U? )it(-,) = 

For k = 2 the numerical values are 
2 ( c T T ) ~ ~ ( ~ )  = 0.735 ( a i  )ie(m) = 294. 

This proves that the phase transition is not accompanied by a breakdown of the spin 
length distribution. 
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Appendix 1 

The partition function QN is, according to (2) and (4), 
m 

QN = I d o  exp (-KuTAu + blTa) where d o  = MI, . . . duN. (A.1) 
-m 

The symmetric matrix A can be transformed to a diagonal matrix A by  an orthogonal 
matrix U 

U-'AU = A with U-'U = 1. 

Therefore we have 
m m 

QN = [ . . . [ dy exp (-KyTAy + bwTy) 

2 
= fI J dyi exp (-KAiyi + bwjyi) 

i = l  -m 

where y = U-'o; w T =  lTU. Hence we get after integration 

We keep in mind that IIEI Ai = det A = det A and write 

where Cji is the jith cofactor of det A. If we define Ai as a matrix obtained from A by 
replacing the ith row by lT = (1, . . . , 1kRN we get finally I;&' Cjj = det Ai. This 
result into (A.2) yields equation ( 5 )  of the text. 

Appendix 2 

To prove that the apparent pole of Chi at z = k + 1 has a vanishing residue we show 
that the numerator on the right-hand side of (21) vanishes term by term for z = k + 1 
or y = 1nJk: 

e-' sinh l y  + (Jk)'  sinh y -sinh ( I  + l)y = 0. 

Indeed this expression gives 

J k  - (Jk)-') - ((Jk)''+''- (Jk)-"+' 
2 

1 (Jk)'-(Jk)- d 2 

which vanishes for all values of 1 and therefore the right-hand side of (21) is also 
analytic for z = k + 1. 
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